Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, app(p, app(s, x))), app(p, app(s, y)))
app(p, app(s, x)) → x
app(app(div, 0), app(s, y)) → 0
app(app(div, app(s, x)), app(s, y)) → app(s, app(app(div, app(app(minus, x), y)), app(s, y)))

Q is empty.


QTRS
  ↳ Overlay + Local Confluence

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, app(p, app(s, x))), app(p, app(s, y)))
app(p, app(s, x)) → x
app(app(div, 0), app(s, y)) → 0
app(app(div, app(s, x)), app(s, y)) → app(s, app(app(div, app(app(minus, x), y)), app(s, y)))

Q is empty.

The TRS is overlay and locally confluent. By [15] we can switch to innermost.

↳ QTRS
  ↳ Overlay + Local Confluence
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, app(p, app(s, x))), app(p, app(s, y)))
app(p, app(s, x)) → x
app(app(div, 0), app(s, y)) → 0
app(app(div, app(s, x)), app(s, y)) → app(s, app(app(div, app(app(minus, x), y)), app(s, y)))

The set Q consists of the following terms:

app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(minus, x0), 0)
app(app(minus, app(s, x0)), app(s, x1))
app(p, app(s, x0))
app(app(div, 0), app(s, x0))
app(app(div, app(s, x0)), app(s, x1))


Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

APP(app(map, f), app(app(cons, x), xs)) → APP(app(cons, app(f, x)), app(app(map, f), xs))
APP(app(minus, app(s, x)), app(s, y)) → APP(app(minus, app(p, app(s, x))), app(p, app(s, y)))
APP(app(minus, app(s, x)), app(s, y)) → APP(p, app(s, y))
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(minus, app(s, x)), app(s, y)) → APP(p, app(s, x))
APP(app(div, app(s, x)), app(s, y)) → APP(app(minus, x), y)
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(minus, app(s, x)), app(s, y)) → APP(minus, app(p, app(s, x)))
APP(app(div, app(s, x)), app(s, y)) → APP(div, app(app(minus, x), y))
APP(app(div, app(s, x)), app(s, y)) → APP(app(div, app(app(minus, x), y)), app(s, y))
APP(app(div, app(s, x)), app(s, y)) → APP(s, app(app(div, app(app(minus, x), y)), app(s, y)))
APP(app(div, app(s, x)), app(s, y)) → APP(minus, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(cons, app(f, x))

The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, app(p, app(s, x))), app(p, app(s, y)))
app(p, app(s, x)) → x
app(app(div, 0), app(s, y)) → 0
app(app(div, app(s, x)), app(s, y)) → app(s, app(app(div, app(app(minus, x), y)), app(s, y)))

The set Q consists of the following terms:

app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(minus, x0), 0)
app(app(minus, app(s, x0)), app(s, x1))
app(p, app(s, x0))
app(app(div, 0), app(s, x0))
app(app(div, app(s, x0)), app(s, x1))

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

APP(app(map, f), app(app(cons, x), xs)) → APP(app(cons, app(f, x)), app(app(map, f), xs))
APP(app(minus, app(s, x)), app(s, y)) → APP(app(minus, app(p, app(s, x))), app(p, app(s, y)))
APP(app(minus, app(s, x)), app(s, y)) → APP(p, app(s, y))
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(minus, app(s, x)), app(s, y)) → APP(p, app(s, x))
APP(app(div, app(s, x)), app(s, y)) → APP(app(minus, x), y)
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(minus, app(s, x)), app(s, y)) → APP(minus, app(p, app(s, x)))
APP(app(div, app(s, x)), app(s, y)) → APP(div, app(app(minus, x), y))
APP(app(div, app(s, x)), app(s, y)) → APP(app(div, app(app(minus, x), y)), app(s, y))
APP(app(div, app(s, x)), app(s, y)) → APP(s, app(app(div, app(app(minus, x), y)), app(s, y)))
APP(app(div, app(s, x)), app(s, y)) → APP(minus, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(cons, app(f, x))

The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, app(p, app(s, x))), app(p, app(s, y)))
app(p, app(s, x)) → x
app(app(div, 0), app(s, y)) → 0
app(app(div, app(s, x)), app(s, y)) → app(s, app(app(div, app(app(minus, x), y)), app(s, y)))

The set Q consists of the following terms:

app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(minus, x0), 0)
app(app(minus, app(s, x0)), app(s, x1))
app(p, app(s, x0))
app(app(div, 0), app(s, x0))
app(app(div, app(s, x0)), app(s, x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
QDP
              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

APP(app(minus, app(s, x)), app(s, y)) → APP(app(minus, app(p, app(s, x))), app(p, app(s, y)))
APP(app(map, f), app(app(cons, x), xs)) → APP(app(cons, app(f, x)), app(app(map, f), xs))
APP(app(minus, app(s, x)), app(s, y)) → APP(p, app(s, y))
APP(app(minus, app(s, x)), app(s, y)) → APP(p, app(s, x))
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(div, app(s, x)), app(s, y)) → APP(app(minus, x), y)
APP(app(minus, app(s, x)), app(s, y)) → APP(minus, app(p, app(s, x)))
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(div, app(s, x)), app(s, y)) → APP(div, app(app(minus, x), y))
APP(app(div, app(s, x)), app(s, y)) → APP(app(div, app(app(minus, x), y)), app(s, y))
APP(app(div, app(s, x)), app(s, y)) → APP(minus, x)
APP(app(div, app(s, x)), app(s, y)) → APP(s, app(app(div, app(app(minus, x), y)), app(s, y)))
APP(app(map, f), app(app(cons, x), xs)) → APP(cons, app(f, x))

The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, app(p, app(s, x))), app(p, app(s, y)))
app(p, app(s, x)) → x
app(app(div, 0), app(s, y)) → 0
app(app(div, app(s, x)), app(s, y)) → app(s, app(app(div, app(app(minus, x), y)), app(s, y)))

The set Q consists of the following terms:

app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(minus, x0), 0)
app(app(minus, app(s, x0)), app(s, x1))
app(p, app(s, x0))
app(app(div, 0), app(s, x0))
app(app(div, app(s, x0)), app(s, x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 3 SCCs with 9 less nodes.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
QDP
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP(app(minus, app(s, x)), app(s, y)) → APP(app(minus, app(p, app(s, x))), app(p, app(s, y)))

The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, app(p, app(s, x))), app(p, app(s, y)))
app(p, app(s, x)) → x
app(app(div, 0), app(s, y)) → 0
app(app(div, app(s, x)), app(s, y)) → app(s, app(app(div, app(app(minus, x), y)), app(s, y)))

The set Q consists of the following terms:

app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(minus, x0), 0)
app(app(minus, app(s, x0)), app(s, x1))
app(p, app(s, x0))
app(app(div, 0), app(s, x0))
app(app(div, app(s, x0)), app(s, x1))

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
QDP
                    ↳ QDPOrderProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP(app(div, app(s, x)), app(s, y)) → APP(app(div, app(app(minus, x), y)), app(s, y))

The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, app(p, app(s, x))), app(p, app(s, y)))
app(p, app(s, x)) → x
app(app(div, 0), app(s, y)) → 0
app(app(div, app(s, x)), app(s, y)) → app(s, app(app(div, app(app(minus, x), y)), app(s, y)))

The set Q consists of the following terms:

app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(minus, x0), 0)
app(app(minus, app(s, x0)), app(s, x1))
app(p, app(s, x0))
app(app(div, 0), app(s, x0))
app(app(div, app(s, x0)), app(s, x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13]. Here, we combined the reduction pair processor with the A-transformation [14] which results in the following intermediate Q-DP Problem.
Q DP problem:
The TRS P consists of the following rules:

DIV(s(x), s(y)) → DIV(minus(x, y), s(y))

The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(p(s(x)), p(s(y)))
p(s(x)) → x

The set Q consists of the following terms:

map(x0, nil)
map(x0, cons(x1, x2))
minus(x0, 0)
minus(s(x0), s(x1))
p(s(x0))
div(0, s(x0))
div(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.


The following pairs can be oriented strictly and are deleted.


APP(app(div, app(s, x)), app(s, y)) → APP(app(div, app(app(minus, x), y)), app(s, y))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
DIV(x1, x2)  =  DIV(x1, x2)
s(x1)  =  s(x1)
minus(x1, x2)  =  x1
0  =  0
p(x1)  =  x1

Recursive path order with status [2].
Quasi-Precedence:
DIV2 > s1

Status:
s1: multiset
0: multiset
DIV2: [1,2]


The following usable rules [14] were oriented:

app(app(minus, x), 0) → x
app(p, app(s, x)) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, app(p, app(s, x))), app(p, app(s, y)))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
                  ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, app(p, app(s, x))), app(p, app(s, y)))
app(p, app(s, x)) → x
app(app(div, 0), app(s, y)) → 0
app(app(div, app(s, x)), app(s, y)) → app(s, app(app(div, app(app(minus, x), y)), app(s, y)))

The set Q consists of the following terms:

app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(minus, x0), 0)
app(app(minus, app(s, x0)), app(s, x1))
app(p, app(s, x0))
app(app(div, 0), app(s, x0))
app(app(div, app(s, x0)), app(s, x1))

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)

The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, app(p, app(s, x))), app(p, app(s, y)))
app(p, app(s, x)) → x
app(app(div, 0), app(s, y)) → 0
app(app(div, app(s, x)), app(s, y)) → app(s, app(app(div, app(app(minus, x), y)), app(s, y)))

The set Q consists of the following terms:

app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(minus, x0), 0)
app(app(minus, app(s, x0)), app(s, x1))
app(p, app(s, x0))
app(app(div, 0), app(s, x0))
app(app(div, app(s, x0)), app(s, x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
The remaining pairs can at least be oriented weakly.

APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
Used ordering: Combined order from the following AFS and order.
APP(x1, x2)  =  APP(x1)
app(x1, x2)  =  app(x2)
map  =  map
cons  =  cons

Recursive path order with status [2].
Quasi-Precedence:
map > APP1 > [app1, cons]

Status:
APP1: multiset
map: multiset
app1: multiset
cons: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)

The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, app(p, app(s, x))), app(p, app(s, y)))
app(p, app(s, x)) → x
app(app(div, 0), app(s, y)) → 0
app(app(div, app(s, x)), app(s, y)) → app(s, app(app(div, app(app(minus, x), y)), app(s, y)))

The set Q consists of the following terms:

app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(minus, x0), 0)
app(app(minus, app(s, x0)), app(s, x1))
app(p, app(s, x0))
app(app(div, 0), app(s, x0))
app(app(div, app(s, x0)), app(s, x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13]. Here, we combined the reduction pair processor with the A-transformation [14] which results in the following intermediate Q-DP Problem.
Q DP problem:
The TRS P consists of the following rules:

MAP(f, cons(x, xs)) → MAP(f, xs)

R is empty.
The set Q consists of the following terms:

map(x0, nil)
map(x0, cons(x1, x2))
minus(x0, 0)
minus(s(x0), s(x1))
p(s(x0))
div(0, s(x0))
div(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.


The following pairs can be oriented strictly and are deleted.


APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
MAP(x1, x2)  =  MAP(x1, x2)
cons(x1, x2)  =  cons(x2)

Recursive path order with status [2].
Quasi-Precedence:
trivial

Status:
cons1: multiset
MAP2: [2,1]


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(minus, x), 0) → x
app(app(minus, app(s, x)), app(s, y)) → app(app(minus, app(p, app(s, x))), app(p, app(s, y)))
app(p, app(s, x)) → x
app(app(div, 0), app(s, y)) → 0
app(app(div, app(s, x)), app(s, y)) → app(s, app(app(div, app(app(minus, x), y)), app(s, y)))

The set Q consists of the following terms:

app(app(map, x0), nil)
app(app(map, x0), app(app(cons, x1), x2))
app(app(minus, x0), 0)
app(app(minus, app(s, x0)), app(s, x1))
app(p, app(s, x0))
app(app(div, 0), app(s, x0))
app(app(div, app(s, x0)), app(s, x1))

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.